村网通总站 里汉村 lihancun.nync.com 欢迎您!
美国知名研究机构CB Insights近日发布重磅报告《2018年必看的人工智能热门趋势》(Top AI Trends To Watch In 2018),报告对AI行业发展现状进行了深入研究剖析,并给出了2018年AI领域最值得关注的13个前沿发展趋势。
1.新蓝领的工作——机器人保姆
CB Insights报告提到,中国T恤制造商天元服装公司与美国阿肯色州政府签署了谅解备忘录,将在阿肯色州的新服装工厂启用400名“工人”。值得一提的是,这400位均为佐治亚州初创公司SoftWear Automation开发的缝纫机器人。此次合作,繁杂的工作全部由机器人完成,人类工作人员只负责机器人维护和操作等高端工作。
AI推动下的机器自动化浪潮,一度被认为要冲击劳动力密集的制造业,造成大面积蓝领工作被替代。但容易被忽略的是新工种出现:机器人保姆。随着高度自动化制造、仓储等机器人完善,同时也需要相关人类对机器人进行维护。比如在亚马逊仓库中,已经有超过10万个机器人投入使用,相应也创造了数千个人类的新工作机会;在日本,到2025年,80%以上的老年护理将由机器人完成,而不是护理人员。
2.机器学习无所不在、无所不能
CB Insights指出,2018年,人工智能无处不在,或者更确切地说,机器学习将无处不在。这项技术几乎“无所不能”,并将在2018年创造出无限可能。
2018年,英国的IntelligentX有望推出世界上第一款AI酿造啤酒;俄罗斯的DeepFish致力于利用神经网络来识别雷达图像中的鱼类;瑞典的Hoofstep更是筹集了风投资金,计划为马匹进行深度行为分析。
3.潜力爆发,中国渐成AI全球领导者
在AI领域,中国正努力超越美国和其他西方国家,政府已经投入了大量精力和资金。2017年中国人工智能初创公司投入在全球占比48%,并首次超越美国占据榜首。据CBInsights预测,2018年就人工智能创业公司和总股本交易数量而言,美国在全球仍将领先,但其正在逐渐失去全球交易主导地位。
中国的AI领域取得的成就,主要得益于在面部识别和智能芯片两大领域的大力发展,前者得益于政府的大力支持近年发展最为迅猛,而后者则是对一向强势的美国芯片的直接挑战。
面部识别方面,独角兽Megvii成绩斐然。该公司的投资方阿里巴巴集团(通过蚂蚁金融)和富士康于2016年在中国杭州市合作开展了“城市大脑”项目,利用人工智能分析监控摄像头数据。
智能芯片方面,2017年7月,中国政府表示,将于2020年与美国达成合作,并于2030年前成为世界领导者。中国企业Cambricon承诺,将在未来三年内生产10亿个处理单元,并正在开发专门用于深度学习的芯片。
此外,除了本国研发,中国主要科技巨头如腾讯、百度和京东加大海外投资力度。据悉,近期,百度和京东已投资ZestFinance,腾讯已投资ObEN。在2018年,这也将成为中国芯片之争胜出的有力筹码。
4.国防的未来转向AI
未来的战争将依赖于前所未有的智能技术。无人机仅仅是个开始。随着传统防御、监视和网络安全侦察的日益融合,对基于算法的AI的需求。
人工智能在防御领域有着天然的优势。由于网络攻击是不断演变的,防御过程中经常需要面临先前未知类型的恶意软件。而人工智能则可凭借其强大的大规模运算能力脱颖而出,迅速排查筛选数百万次事件,以发现异常、风险和未来威胁的信号。
CB Insights报告显示,在2017年,约34家公司进行IPO,加入 Cyber eason,CrowdStrike,Cylance和Tanium等大公司的市场厮杀。其中,每家公司的估值均在9亿美元以上。
5.语音交互竞争全球开战
CB Insights报告显示,目前语音交互战争在英语国家暂时两强并存:Amazon Echo和Google Home主导了智能家庭音箱市场。
值得一提的是,虽然亚马逊在语音计算方面早有领先,但在语言支持方面却处于落后地位,它希望全球用户可以用英语,德语或日语进行互动。
Google Home有英文,德文,法文和日文版本。 而苹果的HomePod目前仅提供英文版本。
此外在中文市场,Amazon和Google都不太有戏,中文市场现在还多雄混战,市场主导地位的竞争仍将继续。阿里巴巴此前报告提到,自2017年7月正式发布以来,其中文版天猫精灵已售出超过100万套。
6.白领工作受到AI挑战
CB Insights认为AI会更加普遍地进入辅助决策阶段,这对白领的工作将造成威胁。
一份EAAS市场地图显示,律师、咨询顾问、财务顾问等专业的工作也将面临AI的入侵,但在这些领域中AI主要起到辅助和改善的作用,比如提高工作效率,是价格收费更合理和商业化,这将影响按小时计费的外部律师事务所的薪酬结构。
那什么样的白领工作是暂时安全的?CB Insights的观点是教育和医疗保健等需要高度情感智能的领域,目前面临的自动化风险最小。